T. Y.B. Tech (mech)-Sem-V1 $\begin{aligned} & \text { Total Points: } 100 \\ & \text { Duration } 3 \text { HoURS }\end{aligned}$

Note:

- Answer any 5 questions out of 7 questions. Each question carries 20 points,
- Answer should be very specific and to the point,
- Make suitable assumptions if needed,
- Answer of all sub-questions must be grouped together in answer book.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question.

CO/BL
Q1. What is the need of numerical integration in the engineering applications? What do you understand by Newton Cotes Quadrature formula? Suggest any three popular methods under this class. Which method can give most accurate approximation. Evaluate the integral $\int_{1}^{2} \sqrt{1+\cos ^{2} x} d x$ with help of Trapezoidal and Simpson $1 / 3$ rule with spacing $h=0.1$

Q2. Differentiate between Interpolation and Regression.
Following are the census details of the population of India from the year 1961 to 2011. Fit an exponential curve, $y=a e^{b k}$ to these data, and hence find the approximate population in the year 1966, 1985, 1996 and 2009.

Year (x)	1961	1971	1981	1991	2001	2011
$\alpha(\mathrm{~mm}) /{ }^{\circ} \mathrm{C}$	43.9235	54.8160	68.3329	84.6421	102.8737	121.0193

Is the current regression model for the given data is appropriate? Suggest an alternative regression model.

Q3. Consider following partial difference equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. Use second order finite difference equation to find the unknown values u_{1}, u_{2}, u_{3}, and u_{4}, Use Gauss Seidel method for the solution.

Q4. Differentiate between IVP and BVP with real life example. Name single step and multistep method (2 methods for each).
Solve the first order ordinary differential equation $\frac{d y}{d t}=y-3 t^{2}$ subject to initial condition $y(0)=1$. Use RK4 with a step size of $h=0.1$ and obtain the solution till $t=$ 0.5 in tabular for with details of steps of calculation.

Discuss the error by comparing the numerical solution with the exact solution given by $y_{\text {exact }}=3 t^{2}+6 t+6-5 e^{t}$.

Q5. What do you understand by mathematical modelling and numerical modelling?
Explain your understanding with appropriate and sufficient examples.
A researcher performed an experiment in his laboratory and obtained following data represented in the able where he changed the input (x). Using data, construct a Lagrange polynomial and a Newton's divided difference polynomial of second order. Calculate $f(3)$ under both methods.
Comment on the order of polynomial possible with the available data.

x	0	1	2	4	5	6
$f(x)$	1	14	15	5	6	19

Q6. What do understand by a system of ill-conditioned system? Suggest a technique to ill-
condition problem.
Solve the following system of equations correct to two decimal places.

$$
\begin{aligned}
& 3.1 x_{1}+9.4 x_{2}-1.5 x_{3}=22.9 \\
& 2.1 x_{1}-1.5 x_{2}+8.4 x_{3}=28.8 \\
& 6.7 x_{1}+1.1 x_{2}+2.2 x_{3}=20.5
\end{aligned}
$$

Use following methods to formulate and compare the result,
a. Gauss-Seidel method
b. SUR with relaxation factor $=0.7$

Show result in tabular form for minimum six iterations.
Q7. During modelling an engineering system, following transcendental equation emerges- $\quad 20 \quad 1,2 / 3,4$

$$
x \mathrm{e}^{x}-2=0
$$

Solve for one of the roots of the equation by the secant method and compare the result with Newton Raphson method.
Tabulate the result, observe it and analyse. Which method gives faster convergence?

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai - 400058

Endsem June 2023 Examinations

Program: B.Tech Civil/Mechanical/Electrical Course Code: OE-BTM613

Course Name: Entrepreneurship Development

Duration: 3 Hrs.
Maximum Points: 100
Semester: VI

Notes:

$$
\begin{gathered}
\text { T. } 4 . B . \text { Tech } \\
\text { sion } 1 \text { is Compulsory. }
\end{gathered}\left\{\begin{array}{c}
\text { mech } \\
\text { Gur }
\end{array}\right\}-\operatorname{Sem}-v 1
$$

1. Question 1 is Compulsory.
2. Answer any 4 out of the remaining 6 questions.

Q. No.	Questions	Points	CO/	
MO	BL			
1 a	List Different Qualities of Entrepreneurs?	04	$01 /$	01
1 b	What is Scamper? Give one example each of this idea generation technique.	04	$02 /$	01
1 c	Describe Desk Research Method of Marketing Research Method?	04	$02 /$	02
1 d	You want to reuse plastic bottles instead of throwing it. Generate any 4 ideas and create a sketch showing reuse of plastic bottles?	04	$03 /$	06
1 e	Give classification of Intellectual Property Rights? 04	04	$04 /$	04
2 a	Explain Democratic and Transactional type of leadership styles?	08	$01 /$	02
2 b	For the 4 ideas developed for plastic bottle reuse in previous question, evaluate the ideas based on Time, Cost, Resource Availability, Market Demand, Funding. Use Evaluation Matrix method and rank the ideas based on the ratings.	08	$02 /$	05
2 c	What are different sampling techniques?	02		
		04	$02 /$	01

SARDAR PATEL COLLEGE OF ENGINEERINĠ

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

3 a	Give the flow chart for prototyping process?	04	$\begin{gathered} 021 \\ 04 \end{gathered}$	01
3 b	Describe role of PCT in Intellectual Property rights? Show its application process with help of flow chart.	08	$\begin{gathered} 041 \\ 05 \end{gathered}$	02
3 c	What is the role of Incubation centers in institutional support to start-ups.	08	$\begin{gathered} \hline 04 / \\ 07 \end{gathered}$	01
4 a	Give the Classification of Prototypes and show different examples of prototypes in each quadrant.	08	$\begin{gathered} 03 / \\ 04 \end{gathered}$	04
4 b	What are the contents of a Feasibility Report?	08	$\begin{gathered} 04 / \\ 06 \end{gathered}$	01
4 c	Differentiate between Innovation and Invention	04	$\begin{gathered} 02 / \\ 02 \end{gathered}$	02
5 a	Explain the procedure of market research and write its limitations?	08	$\begin{gathered} 02 / \\ 03 \end{gathered}$	02
5 b	Recommend various Technical Considerations for Techno-Economy Analysis?	08	$\begin{gathered} 04 / \\ 06 \end{gathered}$	05
5 c	Classify Micro Small and Medium Enterprises.	04	$\begin{gathered} 04 / \\ 07 \\ \hline \end{gathered}$	04
6 a	Give Arthur Cole Classification of Entrepreneurs?	06	$\begin{gathered} 01 / \\ 01 \\ \hline \end{gathered}$	04
6 b	Given is the figure of Office Table. Generate at least 7 ideas on how to make this table technologically advance. Draw sketch of ideas on the given table. Show its features too.	14	$\begin{gathered} \hline 03 / \\ 02 \end{gathered}$	06

7 a	Identify which IPR category below items fall in and give justification for your answer:	10	$04 /$	
	i. Rich Dad Poor Dad Book ii. BMW Car Shape and Design iii. Coke's Coca Cola iv. Jalgaon Banana v. Nike Logo	1,5		
7 b	Describe NSIC and state its functions?	10	$04 /$	2

END SEMESTER EXAMINATION - JUNE 2023

Program: B.Tech. in Civil/Electrical/Mechanical Engineering
Duration: 3 Hours

Course Code: OE-BTM614

Course Name: Introduction to Optimization Methods

1. Question no. 1 is compulsory. Solve any 40 the remaining 6 questions.
2. Assume suitable data if necessary.
3. ' \boldsymbol{a} ' is the single last digit (0 to 9) of the student's registration number in questions marked with *.

Q3 A) * Apply bisection method to complete one iteration to find the minima of following function in the range (10,15). Use a numerical method (such as central difference method) to calculate the gradient.

$$
f(x)=5+(x-13-0.1 \times a)^{2}
$$

B) Solve the optimization problem in Q1(A) using graphical method.
C) * Minimize the following function using KKT method.

$$
\frac{\left(x_{1}-20\right)^{2}}{(1+a)}+\frac{\left(x_{2}-20\right)^{2}}{(10-a)}
$$

Subject to

$$
x_{1}+\dot{x}_{2} \leq(a+10)
$$

Q4 A) State the linear programming (LP) problem in a standard form and define following terms which appear in the canonical form of a LP problem: basic variables, non-basic variables, and constants. Describe the simple algebraic method to obtain the basic solution to an LP problem. What is the advantage of Simplex method over this method?
B) Perform two iterations of Particle Swarm Optimization (PSO) algorithm to find the minima of following function. Show detailed calculations.

$$
f(x)=5+(x-13)^{2}
$$

- Use two particles with initial positions $x_{1}(0)=$ 11 and $x_{2}(0)=14$.
- Inertial weight $\theta=0.8$
- Individual and group learning rates: $c_{1}=c_{2}=1.5$
- For first iteration (both particles): $r_{1}=0.3, r_{2}=0.8$
- For second iteration (both particles): $r_{1}=0.8, r_{2}=0.3$
C) Explain the following computational aspects during an optimization process: (i) Scaling the variables, (ii) Reduced basis technique, (iii) Selection of a suitable software tool for a problem.
Q5 A) An integer programming problem is defined as follows.
Maximize $f=3 x_{1}+5 x_{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+7 x_{2} \leq 100 \\
& 5 x_{1}-7 x_{2} \leq 65
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0, \text { integers }
$$

- Find initial real value solution using graphical method.
- Develop the first branch of BBM based on x_{1} and find real value solution using graphical method for the child node having smaller numerical value.
- Based on your result for the child node, mention further step with proper reasoning based on the BBM algorithm.
B) Illustrate Lagrange Multiplier method for optimization with the help of a suitable example.
C) Discuss the different types of optimization problems encountered in engineering. Provide one example of each type.

Q6 A) An optimization problem is defined as follows.
Minimize $f\left(x_{1}, x_{2}\right)=\left(x_{1}-10\right)^{2}+\left(x_{2}-10\right)^{2}$
Subject to $g_{1}\left(x_{1}, x_{2}\right): x_{1}+x_{2}-p \leq 0$
For $p=10$, optimal solution is $x_{1}^{*}=5, x_{2}^{*}=5$. Obtain the sensitivity of $f\left(x_{1}, x_{2}\right)$ with respect to p.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
B) * Answer following questions related to Genetic Algorithm (GA). \\
- Find length of the binary string to represent a variable up to 2 decimal accuracy in the range of 1 to \((10+a)\). \\
- The following table gives information about the population existing at a particular iteration of GA. \\
The random number generated by the proportionate reproduction operator is \(\left(0.2+0.045^{*} a\right)\). Which member will get selected? \\
- For the population shown above, let member no. 4 and 5 be parents. Considering the position of crossover bit as 2 , generate the offspring strings. \\
- Provide the new string if the offspring generated in the previous step is mutated at \(3^{\text {rd }}\) bit. \\
C) * Apply exhaustive search method to complete three iterations to find the minima of following function in the range \((10,15)\). Consider 5 steps within the total interval.
\[
f(x)=5+(x-13-0.1 \times a)^{2}
\]
\end{tabular} \& (5) \& \begin{tabular}{|c}
2 \\
\\
\\
\\
\\
3
\end{tabular} \& 3 \& 6 \\
\hline Q7 \& \begin{tabular}{l}
A) Describe the Karush-Kuhn-Tucker (KKT) optimality conditions for handling a general optimization problem. What are the limitations of this method? \\
B) Compare the features of deterministic and stochastic algorithms for optimization. Support your comparison with an appropriate example from each type of algorithm. \\
C) * During an iteration of Simulated Annealing (SA) run, the objective function values for two successive points \(x_{1}\) and \(x_{2}\) are 100 and \((120+a)\). The temperature value during these calculations is 100 . The random number generated to apply the Metropolis criterion is \(\left(0.4+0.5^{*} a\right)\). Determine whether \(x_{2}\) would be accepted by the algorithm as an optimum point? \\
A python code for implementing SA for optimization is given in Annexure II. Answer the following questions after reviewing the code. \\
- Find out the mathematical function which is used to define the cooling schedule. State the corresponding line number. \\
- Locate the code (line numbers) for implementing the Metropolis criterion. \\
- What will be the effect of increasing the values of variable \(n\) on the performance of the code? \\
D) Explain the particle swarm optimization (PSO) algorithm with neat flowchart.
\end{tabular} \& (5) \& 1
2

3 \& 2
2
4

4
2 \& 2
1
5

6

\hline
\end{tabular}

ANNEXURE I (Sensitivity equations using KKT formulation)

$$
\frac{d f(\bar{X})}{d p}=\frac{\partial f(\bar{X})}{\partial p}+\sum_{i=1}^{n} \frac{\partial f(\bar{X})}{\partial x_{i}} \frac{\partial x_{i}}{\partial p}
$$

$\left[\begin{array}{cc}{[P]_{n \times n}} & {[Q]_{n \times q}} \\ {[Q]_{q \times n}^{T}} & {[0]_{q \times q}}\end{array}\right]\left\{\begin{array}{l}\left.\frac{\partial x_{i}}{\partial p}\right|_{n \times 1} \\ \left.\frac{\partial \lambda_{j}}{\partial p}\right|_{q \times 1}\end{array}\right\}+\left\{\begin{array}{l}{[a]_{n \times 1}} \\ {[b]_{q \times 1}}\end{array}\right\}=\left\{\begin{array}{l}{[0]_{n \times 1}} \\ {[0]_{q \times 1}}\end{array}\right\}$

$$
\begin{array}{ll}
P_{i k}=\frac{\partial^{2} f(\bar{X})}{\partial x_{i} \partial x}+\sum_{j \in J_{1}} \lambda_{j} \frac{\partial^{2} g_{j}(\bar{X})}{\partial x_{i} \partial x_{k}} & J_{1} \text { is the set of active constraints } \\
Q_{i j}=\frac{\partial g_{j}(\bar{X})}{\partial x_{i}} & j \in J_{1} \\
a_{i}=\frac{\partial^{2} f(\bar{X})}{\partial x_{i} \partial p}+\sum_{j \in J_{1}} \lambda_{j} \frac{\partial^{2} g_{j}(\bar{X})}{\partial x_{i} \partial p} & j \in J_{1} \\
b_{j}=\frac{\partial g_{j}(\bar{X})}{\partial p} & j \in J_{1}
\end{array}
$$

ANNEXURE II: Simulated Annealing Algorithm (Partial Code)

def $f(x)$:
\# code trimmed
return val
def constraints_okay (x1, x2):
\# code trimmed
return val
\#\#\#\#\#\# Number of cooling steps
$n=50$
\#\#\#\#\#\# Number of trials per cooling step (t_max)
$t_{\text {_max }}=5$
\#\#\#\#\#\# Initial temperature
$T_{\max }=100$
\#\#\#\#\#\# Final temperature
$\mathrm{T}_{\mathrm{min}}=0.1$
\#\#\#\#\#\# Start location
x_start $=[-9,-5]$
\#\#\#\#\#\# allowable integer increments for x 1 and $\times 2$
xint=list(range(-10,11,1))
\# Initialize x
$x=n p . z \operatorname{ros}((n+1,2))$
$x[0]=x$ _start
$\mathrm{xi}=n \mathrm{n} . \mathrm{zeros}(2)$
$\mathrm{xi}=\mathrm{x}$ _start
\# Current best results so far
$\mathrm{xc}=$ np.zeros (2)
$\mathrm{xc}=\mathrm{x}[0]$
$\mathrm{fc}=\mathrm{f}(\mathrm{xc})$
fs $=$ np.zeros $(n+1)$
$\mathrm{fs}[0]=\mathrm{fc}$
\# Current temperature
$\mathrm{t}=\mathrm{Tmax}^{\mathrm{m}}$
for i in range(n):

```
\#print('Cycle: ' \(+\operatorname{str}(\mathrm{i})+\) ' with Temperature: \({ }^{\prime}+\operatorname{str}(\mathrm{t})\) )
```

\#print('Cycle: ' $+\operatorname{str}(\mathrm{i})+$ ' with Temperature: ${ }^{\prime}+\operatorname{str}(\mathrm{t})$)
for j in range(t_max):
for j in range(t_max):
\# Generate new trial points
\# Generate new trial points
pointsokay=False
pointsokay=False
while not pointsokay:
while not pointsokay:
x 1 temp $=\mathrm{xc}[0]+$ random.choice(xint)
x 1 temp $=\mathrm{xc}[0]+$ random.choice(xint)
$x 2$ temp $=x c[1]+$ random.choice(xint)
$x 2$ temp $=x c[1]+$ random.choice(xint)
if constraints_okay(x1temp,x2temp):
if constraints_okay(x1temp,x2temp):
pointsokay=True
pointsokay=True
$\mathrm{xi}[0]=x 1$ temp
$\mathrm{xi}[0]=x 1$ temp
xi[1] $=x 2$ temp
xi[1] $=x 2$ temp
DeltaE $=a b s(f(x i)-f c)$
DeltaE $=a b s(f(x i)-f c)$
if (f(xi)>fc):
if (f(xi)>fc):
\# objective function is worse
\# objective function is worse
\# generate probability of acceptance
\# generate probability of acceptance
$p=$ math. $\exp (-$ DeltaE/t $)$
$p=$ math. $\exp (-$ DeltaE/t $)$
\# determine whether to accept worse point
\# determine whether to accept worse point
if (random.random()<p):
if (random.random()<p):
\# accept the worse solution
\# accept the worse solution
accept $=$ True
accept $=$ True
else:
else:
\# don't accept the worse solution
\# don't accept the worse solution
accept $=$ False
accept $=$ False
eise:
eise:
\# objective function is lower, automatically accept
\# objective function is lower, automatically accept
accept $=$ True
accept $=$ True
if (accept==True):
if (accept==True):
\# update currently accepted solution
\# update currently accepted solution
$x c[0]=x i[0]$
$x c[0]=x i[0]$
$x c[1]=x i[1]$
$x c[1]=x i[1]$
$\mathrm{fc}=\mathrm{f}(\mathrm{xc})$
$\mathrm{fc}=\mathrm{f}(\mathrm{xc})$
\# Record the best x values at the end of every cycle
\# Record the best x values at the end of every cycle
$x[i+1,0]=x c[0]$
$x[i+1,0]=x c[0]$
$x[i+1,1]=x c[1]$
$x[i+1,1]=x c[1]$
$\mathrm{fs}[i+1]=\mathrm{fc}$
$\mathrm{fs}[i+1]=\mathrm{fc}$
\# Lower the temperature for next cycle
\# Lower the temperature for next cycle
\# Fractional reduction every cycle
\# Fractional reduction every cycle
frac $=(\operatorname{Tmin} / T \max)^{\star \star}(1.0 /(\mathrm{n}-1.0))$
frac $=(\operatorname{Tmin} / T \max)^{\star \star}(1.0 /(\mathrm{n}-1.0))$
$\mathrm{t}=\mathrm{frac}$ * t
$\mathrm{t}=\mathrm{frac}$ * t
print('Cooling step: ' + str(i) + ' with Temperature: \%5.2f'\%(t),
print('Cooling step: ' + str(i) + ' with Temperature: \%5.2f'\%(t),
Accepted current solution: (',xc[0],,",xc[1],'), obj.func. $\left.={ }^{\prime}, f c\right)$
Accepted current solution: (',xc[0],,",xc[1],'), obj.func. $\left.={ }^{\prime}, f c\right)$
print('Best solution: ' $+\operatorname{str}(\mathrm{xc})$)

```
print('Best solution: ' \(+\operatorname{str}(\mathrm{xc})\) )
```

END SEM EXAM JUNE 2023

DATE :12-06-2023	SESSION: MORNING
Class : Third Year B.Tech.in Mechanical Engıneering	Semester : VIIT
Course Name Manufacturing Planning and Control	PC-BTM605
Total Points 100	Time Allotted: 3hour
NB. T.4.B. Tech (Mech) Sem- V1 1. Que 1 is compulsory 2. Solve any 4 questions from remaining. 3. Assume Suitable Data wherever required	$\cdots b \gg$

QN	Question Statement			Points	Module	CO
Q1A	A project has following data.			10	M5	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \end{aligned}$
	Activity	Immediate Predecessor	Duration			
	A	-	6			
	B	-	4			
	C	A, B	9			
	D	B	5			
	E	A	7			
	F	C	5			
	G	E,F	4			
	H	D,F	5			
	I	G,H	9			
	J	I	5			
	i. D ii. Find iii. Fi iv. Fi v. Fi vi. Fi vii. Fi viii. St	Network. Path for each event. T,LST,LFT fo each activity. ose of finding	ctivity path and float.			

	one unit of each of product on each type of machine is given below. Formulate the L.P. model to maximize the profit									
Q3A	The oil India is considering whether to go for an offshore oil drilling contract to be awarded in Mumbai High. If they Bid value would be Rs 600 million with 65% chance of gaining the contract. They may set up a new drilling operation or move already existing operation which has proved successful to new site. The Probability of success and expected returns are as follows.							10	$\begin{array}{\|l\|} \hline \text { M5 } \\ \text { M6 } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CO} 1 \\ \mathrm{CO} 3 \\ \hline \end{array}$
	Outcome		New Drilling Operation			Existing Drilling Operation				
			Probability	Expected Revenue In Rs Millions		Probability	Expected Revenue In Rs Millions			
	Success		0.75	800		0.85	700			
	Failure		0.25	200		0.15	350			
	- If the corporation do not bid or lose the contract they can use Rs 600 million to modernise their operations. - This would result in return of 5% or 8% on sum invested with probabilities 0.45 and 0.55 - Construct the Decision Tree and Give your recommendation to Oil India Corporation.									
Q3B	Five Jobs $1,2,3,4,5$ are to be assigned to 5 machines M1, M2, M3, M4, M5. The cost of assigning these jobs to machines in Rupees is given in the following matrix. Find The optımal Assignment and total cost of Assignment.							10	M7	CO2
	Jobs	M1	M2	M3	M4	M5				
	1	6	7	5	9	4				
	2	7	5	10	9	6				
	3	5	4	3	6	5				
	4	8	3	5	6	4				
	5	4	7	5	6	6				
Q4A	A firm as using four follows: Type A un Rs. 90 each Graphicall	semble unit es and gearces an as	es and sells urces. The bring in a hat should ate the appli	produ Capacity Or any 225 Ty 175 Ty 250 Ty Or any profit d be th lication		ypes of moto cess can be onth its or 250 T mbination o S S ts or 200 Ty mbination 0 each and um product	rs, A and B , described as ype B units the two pe B Units the two pe B units, mix? Solve	10	M6	CO 1, CO 2

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examination June 2023
Program: Third Year B.Tech. Mechanical Engineering
Course Code: PC-BTM612

Course Name: Machine Design

Notes: 1. Solve any FIVE questions.
2. Each question carries equal marks.
3. Assume suitable data wherever necessary and justify the same.
4. Use of Machine Design Data Book by V. B. Bhandari is permitted.

End Semester Examination June 2023

	A line shaft supporting two pulleys A and B is shown in Fig. Power is supplied to the shaft by means of a vertical belt on the pulley A, which is then transmitted to the pulley B carrying a horizontal belt. The ratio of belt tension on tight and loose sides is $3: 1$. The limiting value of tension in the belts is 2.7 kN . The shaft is made of plain carbon steel 40 C 8 (Sut $=650 \mathrm{~N} / \mathrm{mm}^{2}$ and Syt $=380 \mathrm{~N} / \mathrm{mm}^{2}$). The pulleys are keyed to the shaft. Determine the diameter of the shaft according to the ASME code if, kb=1.5 and kt $=1.0$			

End Semester Examination June 2023

End Semester Examination June-2023

Program: 13. Tech. Mechanical

Course Code: PC-BNM611
Course Name: Refrigeration and Air-Conditioning.

Duration: 3 Hours
Maximum Points: 100
Semester: VI Instructions: T.4.B Tech (mech) Sem-vI,

1) Question number ONE is compulsory and solve any FOUR questions out of remaining SIX
2) Use of refrigerant properties table and psychometric chart is permitted.
3) Use of steam table is permitted.
4) Assume suitable data, mention it and justify the same.

End Semester Examination June-2023

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& effect on COI and $\mathrm{H} P / \mathrm{TR}$? \& \& \& \&

\hline 3(a) \& What is ozone depletion potential (ODP) and global warming potential (GWF)? How refrigerants are link to ODP and GWP. How ozone layer gets depleted by the use of CFC's explain in detail. \& 10 \& $\begin{array}{r}3 \\ \\ \hline\end{array}$ \& 2 \& 2

\hline 3(b) \& Explain the thermodynamic wet bulb temperature in detail. State in case of air how the wet bulb temperature is equal to the thermodynamic wet bulb temperature. \& 10 \& 4 \& 2

3 \& 3

\hline 4(a) \& Discuss various desirable properties of ideal refrigerants. \& 10 \& 2 \& 3 \& 2

\hline 4(b) \& The DBT and WBT of the air are 40 C and $28^{\circ} \mathrm{C}$ respectively. Find the followings if total air pressure is 1.03 bar. Calculate following without using psychrometric chart. (i) Specific humidity (ii) Relative hurnidity (iii) ГPPT (iv) density (iv) Enthalpy \& 10 \& 3 \& 1 \& 3

\hline 5 \& | Enthalpy. |
| :--- |
| Given for a conditioned space: |
| Room sensible heat gain $=20 \mathrm{~kW}$ |
| Room latent heat gain $=5 \mathrm{~kW}$ |
| Inside design conditions $=25^{\circ} \mathrm{CDBT}, 50 \% \mathrm{RH}$ |
| Bypass factor of the cooling coil $=0.1$ |
| The return air from the space is mixed with the outside air before entering the cooling coil in the ratio of $4: 1$ by weight. |
| Estimate the followings: |
| (i) Apparatus dew point |
| (ii) Condition of air leaving cooling coil |
| (iii) Dehumidified air quantity. |
| (iv) Ventilation air mass and volume flow rates |
| (v) Total refrigeration load on the air conditioning plant. | \& 20 \& 4 \& 3,4 \& 4

\hline 6(a) \& Explain various methods of duct design for air distribution in centralize air conditioning plant. \& 10 \& 3 \& 2 \& 5

\hline 6(b) \& Discuss mechanism of body heat loss and explain mathematical model of heat exchange between man and environment. \& 10 \& 3 \& 2 \& 6

\hline 7(a) \& Draw a comfort chart and explain it in detail. \& 10 \& 3 \& 2 \& 6

\hline 7(b) \& Draw schematic diagram of simple vapour absorption system and explain it in detail. Also derive an expression for maximum COP of heat operated refrigeration machine (simple VARS system) \& 10 \& 1 \& 2 \& 7

\hline
\end{tabular}

Program: BTECH (MECHANICAL ENGG.)
Course Code: PC-BTM606
Course Name: CAD / CAM/CIM
T.4. BTech (mech) - Sem VI

Important Notes:

- Solve any five questions out of seven
- Figures to the right indicates full marks
- Assume suitable data wherever necessary

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examination - MAY 2023 Examinations JUNE

Q. 4 (a)	Fig.a Formulate a CNC program for the given fig. a using G85 Canned Cycle	[05]	4	3	5.2 .1 0
(b)	- Explain significance of G98 \& G99 codes along with neat sketches? - Explain Tool Length Compensation with neat sketch	[05]	1	2	5.2.1
(c)	Fig.C Formulate a CNC program for the given fig.c using G81 Canned Cycle (For holes 1 to 8) \& G83 Canned Cycle (For holes 9 to 10). Also use G98 and G99 code along with G81 \& G83 canned cycles.	[10]	3	3	$5.2 .1$

End Semester Examination - MAY 2023 Examinations

Q. 5 (a)	Fig.b For the object shown above in Fig.b use the graph based feature recognition approach to achieve the following - Develop the AAG of the given object - Give the matrix representation of the AAG - Recognize the features in this object	[10]	3	3	5.2.1
(b)	Explain Bresenhams Circle Algorithms	[06]	3	3	5.2.1
(c)	Explain the properties of Bezier curve with neat sketches	[04]	3	3	5.2.1
Q. 6	Write a C^{++}program for following 2D transformations using class 8 object - Translation - Scaling - Rotation - Reflection - Shearing Insert comments wherever necessary.	[20]	2,4	3	5.2.1
Q. 7	Write Short Notes on (Any Three) - Graphics Standards - Computer Integrated Manufacturing (CIM) - Augmented Reality - Design for Assembly (DFA) - Structured Query Language (SQL)	[20]	3,4	2	5.2.1, 3.2 .1

Sardar Patel College of Engineering

（A Government Aided Autonomous Institute） Munshi Nagar，Andheri（West），Mumbai－ 400058

END SEMESTER EXAMINATION，June－2023

Program：B．Tech．in Mechanical Engineering Class：Third Year B．Tech．（Mechanical） Course code：PCC－BTM 614
Course：Internal Combustion Engines
\section*{Instructions：}

Date： 23 June 2023
Duration： 3 Hr．
Max．Points： $\mathbf{1 0 0}$
Semester：

－Solve ANY O5 of the following questions．
－Draw neat system diagram／Sketches／process diagrams wherever necessary．
－Assume suitable data wherever necessary and state the same．
－Answers to the questions should be Brief and Specific in Legible hand writting，

$\begin{aligned} & \mathbf{Q} . \\ & \mathbf{N} . \end{aligned}$	Question	豊	0	堇	号	\pm
1.	A）Discuss：Classification of I．C．Engines．Explain：Working of a four－stroke petrol engine．Draw：Neat sketch． B）Compare：S．I．and C．I．Engines on the basis of thermodynamic cycle，compression ratio，fuel used，introduction／injection of fuel and combustion of fuel．Draw：Neat sketches wherever necessary．	（10） （10）	1 1	1 1,3	I，II I，II	1.4 .1 1.4 .1
2.	A）Describe：Phenomenon of combustion in S．I．Engines．Draw： Neat p－θ diagram．Explain：Each stage of combustion． B）Explain：Significance of fuel－air cycle and how it differs from an air－standard cycle．Draw：Neat sketches．In an air standard Otto cycle，air at $17^{\circ} \mathrm{C}$ and 1 bar is compressed adiabatically until the pressure is 15 bar．Heat is added at constant volume until the pressure rises to 40 bar．Calculate：Mean effective pressure of the cycle． Assume $\mathrm{Cv}=0.717 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and gas constant $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}$ ．K for air as the working fluid．	（10） （10）	1 1,2	2 1, 2	$\begin{gathered} \mathrm{I}, \mathrm{II} \\ \mathrm{I}, \mathrm{II} \\ \mathrm{~V} \end{gathered}$	1.4 .1 1.4 .1
3.	A）State：Types of fuel injection system for C．I．Engines．Describe： Working，advantages and disadvantages of any one of the solid fuel injection system．Draw：Neat sketch． B）Explain：i）Mechanical Efficiency ii）Relative Efficiency of an I．C．Engine．A Four－stroke S．I．engine develops a brake power of 20.9 kW ．The bore of the engine is 75 mm and the stroke is 90 mm ．A Morse Test was conducted on this engine and the brake power（ kW ） obtained when each cylinder was separately made inoperative by short circuiting the spark plug are $14.9,14.3,14.8$ and 14.5 kW respectively．The test was conducted at constant speed of 3000 rpm ．	（10） （10）	1,4 2,3	3	I，II II， V	1.4 .1 1.4 .1

	Determine: i) Indicated power ii) Mechanical efficiency iii) bmep when all the cylinders are firing and engine is operational with all the four cylinders.					
4.	A) Explain: i) Delay period ii) Diesel knock. Compare: Knocking in S.I. and C.I. engines. B) During the trial of a single cylinder four-stroke diesel engine, With Cylinder diameter $=20 \mathrm{~cm}$ and Stroke $=40 \mathrm{~cm}$, following results were obtained: Mean effective pressure $=6 \mathrm{bar}$, Torque $=407 \mathrm{~N} . \mathrm{m}$, Speed $=250 \mathrm{rpm}$, Oil consumption $=4 \mathrm{~kg} / \mathrm{h}$, Calorific value of fuel $=43 \mathrm{MJ} / \mathrm{kg}$, Cooling water flow rate $=4.5 \mathrm{~kg} / \mathrm{min}$, Air used per kg of fuel $=30 \mathrm{~kg}$, Rise in cooling water temperature $=45^{\circ} \mathrm{C}$, Temperature of exhaust gases $=420^{\circ} \mathrm{C}$, Room temperature $=20^{\circ} \mathrm{C}$, Mean specific heat of exhaust gas $=1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, Specific heat of water $=4.18 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ Evaluate: i) Indicated power ii) Brake power. Prepare: Heat balance sheet for the test in kJ / h.	(10) (10)	1 2,3	2,3 4	I,II V, VI	1.4.1
5.	A) Justify: Four stroke engines are more fuel economic and environment friendly as compared to Two stroke engines. Draw: Neat sketches. (B) Explain: Significant properties of fuels for use in S.I. Engine. (C) Explain: i) Octane Number ii) Cetane Number	$\begin{aligned} & \hline(07) \\ & \\ & (07) \\ & (06) \\ & \hline \end{aligned}$	4 4 4	1,5 5 5	I, V II II	$\begin{aligned} & \hline 1.4 .1 \\ & \\ & 1.4 .1 \\ & 1.4 .1 \end{aligned}$
6.	A) State: Various types of Engine Cooling System and Compare: The advantages and disadvantages of air cooling and water cooling of I.C. Engines. Explain: Working of any one of the water cooling system. Draw: Neat diagram. B) List: Various alternative liquid fuels for I.C. Engines. Discuss: Suitability of biodiesel as an effective alternative C.I. engine fuel for diesel engines in terms of its properties and environmental effects.	(10) (10) 10$)$	4 4 4 4	6 7 7 6	I, II, V I, II	1.4.1
7.	A) Justify: Necessity of lubrication and State: Various lubrication systems for I.C. Engines. Describe: Any one of the Wet sump lubrication system. Draw: Neat sketch. B) State: Various alternative gaseous fuels for I.C. Engines. Compare: Advantages and disadvantages of using Hydrogen, CNG and LPG as S.I. Engine fuel.	(10) (10)	4 4	6 7	I, II, V I, V	1.4.1

End-Sem Examinations June 2023

Program: T. Y. B Tech (Mechanical Engg.)
Course Code: PE-BTM5 18
Course Name: Mechanical Vibration

Duration: 3 hr
Maximum Points: 100
Semester: VI
T.4.B.Tech (mech) Sem-V1

1. Q. no. 1 is compulsory, solve any four out of remaining.
2. Answers to each sub-questions must be grouped together
3. Use of scientific calculator is allowed
4. Begin answer to each question on new page.
5. Candidates should write the answers legibly

Q.No.	Questions	Pts	Co	BL
1	Answer the following: a) In practice, the measurement of vibration has become necessary, Why? (discuss any five point). b) Discuss in detail se-definite system of a two DoF vibrating system. c) Discuss the Beats phenomenon when a SDoF is subjected to external forcing frequency. d) How does a continuous system differ from a discrete system in vibration analysis? Discuss.	5x4	$1,3,$	3,4
2	a) A damper offers resistance 1.2 N at constant velocity $4 \mathrm{~cm} / \mathrm{sec}$. The vibrating system consists of a spring $K=100 \mathrm{~N} / \mathrm{m}$ along with this damper. Calculate the following for this single-degree-of-freedom system having mass $m=4 \mathrm{~kg}$, i. Natural time period, τ ii. Damped frequency, ω_{d} iii. Critical damping constant, $c c$ $i v$. Damping ratio, ξ v. Logarithmic decrement, δ b) The free-vibration responses of an electric motor of weight 450 N mounted on the foundation is shown in Fig. Identify the following: (i) the undamped and damped natural frequencies of the electric motor, and (ii) the spring constant and damping constant of the foundation.	5 15	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$	2,3

End-Sem Examinations June 2023

\begin{tabular}{|c|c|c|c|c|}
\hline 3 \& \begin{tabular}{l}
a) A machine of mass one ton is acted upon by an external force of 2500 N at a frequency of 1440 rpm . To reduce the effect of vibration, isolator of rubber having a static deflection of 2 mm under the machine load and an estimated damping \(\zeta=0.15\) are used. Determine : a) the force transmitted to the foundation b) the amplitude of vibration of machine c) phase lag. \\
b) A vehicle of mass 600 kg and total spring constant of its suspension system is \(60 \mathrm{kN} / \mathrm{m}\). The profile of the road may be approximated to a line curve of amplitude 4.0 cm and wavelength of 4.0 meters. Determine: a) the critical speed of the vehicle b) amplitude of the steady state motion of the mass when the vehicle is driven at critical speed and at speed of 57 kmph , take the damping factor is 0.45 .
\end{tabular} \& 10

10 \& 1,2 \& 2,3

\hline 4 \& | a) For the system shown in figure $M_{1}=1 \mathrm{~kg}, M_{2}=2 \mathrm{~kg}$, $\mathrm{K}_{1}=2 \mathrm{kN} / \mathrm{m}, \mathrm{K}_{2}=1 \mathrm{kN} / \mathrm{m}$, $\mathrm{K}_{3}=3 \mathrm{kN} / \mathrm{m}$ and an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ is imparted to mass M_{1}; Calculate the resulting motion of two masses. |
| :--- |
| b) Show that mode shapes in above example are orthogonal. | \& 15

5 \& 2,3 \& 3,4

\hline 5 \& | a) A spring-mass system with $m=0.5 \mathrm{~kg}$ and $k=10,000 \mathrm{~N} / \mathrm{m}$, with negligible damping, is used as a vibration pickup. When mounted on a structure vibrating with amplitude of 4 mm , the total displacement of the mass of the pickup is observed to be 12 mm . Find the frequency of the vibrating structure. |
| :--- |
| b) Draw flow-diagram of basic vibration measurement scheme. Discuss the function of each block. |
| c) Write short note on Accelerometer. | \& 8

6

6 \& $$
\begin{aligned}
& 1,2 \\
& 3
\end{aligned}
$$ \& 3,4

\hline 6 \& Derive the expression for the natural frequency of the torsional system shown in fig. and draw the normal mode curve. Show that the nodal distance from J_{2} is

$$
L_{2}\left(1+\frac{k_{t 2}}{k_{t 1}}\right) /\left(1+\frac{J_{1}}{J_{2}}\right) .
$$ \& 20 \& \[

$$
\begin{aligned}
& 1,2 \\
& 3
\end{aligned}
$$
\] \& 2,3

\hline 7 \& | a) The strings of guitar are made of music wire with diameter 0.05 mm , weight density $76.5 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{E}=207 \mathrm{GPa}$. If the length of two of the strings is 60 cm and 65 cm each, determine the fundamental natural frequencies of the strings. The tension in each string is 50 kN . |
| :--- |
| b) Describe the Holzer method. | \& 8

12 \& 2,3 \& 3,4

\hline
\end{tabular}

Free Undamped SDOF:

- Equation of motion

$$
\begin{aligned}
& x(t)=A_{1} \cos \omega_{n} t+A_{2} \sin \omega_{n} t \\
& x(t)=x_{0} \cos \omega_{n} t+\frac{x_{0}}{\omega_{n 2}} \sin \omega_{n} t
\end{aligned}
$$

- Amplitude:

$$
A=\sqrt{\left(A_{1}^{2}+A_{2}^{2}\right)}=\sqrt{x_{0}^{2}+\left(\frac{x_{0}^{\prime}}{\omega_{n}}\right)}
$$

- Phase Angle

$$
\phi=\tan ^{-1}\left(\frac{\dot{x}_{0}}{x_{0} \omega_{n}}\right)
$$

2DOF:

- Equation of motion:

$$
[m] \ddot{\vec{x}}(t)+[c] \dot{\vec{x}}(t)+[k] \vec{x}(t)=\vec{f}(t)
$$

- Frequency or Characteristic Equation:
$\operatorname{dec}\left[\begin{array}{cc}\left\{-m_{1}\left(w^{2}+\left(k_{1}+k_{2}\right)\right\}\right. & -k_{2} \\ -k_{2} & \left(-m_{2} \omega^{2}+\left(k_{2}+k_{3}\right)\right\}\end{array}\right]=0$

Response of Free SDOF Underdamped Vibration

$$
\begin{aligned}
& C_{1}^{\prime}=x_{0}, \quad C_{2}^{\prime}=\frac{\dot{x}_{0}+\zeta \omega_{n} x_{0}}{\sqrt{1-\zeta^{2}} \omega_{n}} \\
& X=X_{0}=\sqrt{\left(C_{1}^{\prime}\right)^{2}+\left(C_{2}^{\prime}\right)^{2}}=\frac{\sqrt{x_{0}^{2} \omega_{n}^{2}+\dot{x}_{0}^{2}+2 x_{0} \dot{x}_{0} \zeta \omega_{n}}}{\sqrt{1-\zeta^{2} \omega_{n}}} \\
& \quad \phi_{0}=\tan \\
& -1\left(\frac{C_{1}^{\prime}}{C_{2}^{\prime}}\right)=\tan ^{-1}\left(\frac{x_{0} \omega_{n} \sqrt{1-\zeta^{2}}}{\dot{x}_{0}+\zeta \omega_{n} x_{0}}\right)
\end{aligned}
$$

- MODE SHAPE:

$$
\begin{aligned}
& n_{1}=\frac{X_{2}^{(1)}}{X_{1}^{(1)}}=\frac{-m_{1} \omega_{1}^{2}+\left(k_{1}+k_{2}\right)}{k_{2}}=\frac{k_{2}}{-m_{2} \omega_{1}^{2}+\left(k_{2}+k_{3}\right)} \\
& r_{2}=\frac{X_{2}^{(2)}}{X_{1}^{(2)}}=\frac{-m_{1} \omega_{2}^{2}+\left(k_{1}+k_{2}\right)}{k_{2}}=\frac{k_{2}}{-m_{2} \omega_{2}^{2}+\left(k_{2}+k_{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}^{(1)}(t)=\left\{\begin{array}{l}
X_{1}^{(1)}(t) \\
X_{2}^{(1)}(t)
\end{array}\right\}=\left\{\begin{array}{c}
X_{1}^{(1)} \cos \left(\omega_{1} t+\phi_{1}\right) \\
n_{1} X_{1}^{(1)} \cos \left(\omega_{1} t+\phi_{1}\right)
\end{array}\right\}=\text { first mode } \\
& \vec{x}^{(2)}(t)=\left\{\begin{array}{l}
X_{1}^{(2)}(t) \\
X_{2}^{(2)}(t)
\end{array}\right\}=\left\{\begin{array}{c}
X_{1}^{(2)} \cos \left(\omega_{2} t+\phi_{2}\right) \\
{ }_{2} X_{1}^{(2)} \cos \left(\omega_{2} t+\phi_{2}\right)
\end{array}\right\}=\text { second mode }
\end{aligned}
$$

Sr. No.	Name	\mathbf{Z}	Φ
1	Vibration Pickups $/$ Accelerometer	$\frac{r^{2} Y}{\left[\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}\right]^{1 / 2}}$	$\tan ^{-1}\left(\frac{2 \zeta r}{1-r^{2}}\right)$

Continuous vibration n ${ }^{\text {th }}$ mode of vibration	$w_{n}(x, t)=W_{n}(x) T_{n}(t)=\sin \frac{n \pi x}{l}\left[C_{n} \cos \frac{n c \pi t}{l}+D_{n} \sin \frac{n c \pi t}{l}\right]$
$C_{n}=\frac{2}{l} \int_{0}^{l} u_{0}(x) \sin \frac{(2 n+1) \pi x}{2 l} d x$	$D_{n}=\frac{4}{(2 n+1) \pi c} \int_{0}^{l} u_{0}(x) \sin \frac{(2 n+1) \pi x}{2 l} d x$

A. Forced Vibrations						
$\begin{aligned} & \text { Sr. } \\ & \text { No. } \end{aligned}$	System Type	Xp/ $/ \mathrm{st}$	Φ	r for Mmax	Force Transmitted to Base	Mmax
1	Forced Undamped System	1/(1-r r^{2})	-	1	-	∞
2	Forced Damped System	$\frac{1}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}}$	$\tan ^{-1}\left(\frac{2 r r}{1-r^{2}}\right)$	$\sqrt{1-2 \zeta^{2}}$	-	$\frac{1}{25 \sqrt{1-5}}$
3	Damped System under Harmonic Base Motion	$\left[\frac{1+(2 r r)^{2}}{\left(1-r^{2}\right)^{2}+(2 g r)^{2}}\right]^{1 / 2}$	$\tan ^{-1}\left[\frac{y r^{3}}{1+\left(x^{2}-1 r^{2}\right.}\right]$	$\left.I_{5}=\frac{1}{4} \sqrt{1+9^{2}}-1\right]^{12}$	$\frac{f_{r}}{k}=r^{-}\left[\frac{1+(2 r)^{2}}{\left(1-r^{2}\right)^{2}+(2 r)^{2}}\right]^{1 h}$	-
4	Damped System under Rotating Unbalance	$\frac{M}{m i x}=\frac{r}{\left[(1-r)^{2}+r r^{T}\right]}$	$\tan ^{-1}\left(\frac{2 t r}{1-r^{2}}\right)$	$\frac{1}{\sqrt{1-2 \sigma^{2}}}$		$\frac{1}{2 \zeta \sqrt{1-5^{2}}}$

1.	2 DOF system under external forces	$[Z(i \omega)] \vec{X}=\vec{F}_{0}$
2	Mechanical Impedance	$Z_{r s}(i \omega)=-\omega^{2} m_{r s}+i \omega c_{r s}-k_{r s} . \quad r_{r s} s=1,2$
3	Impedance Matrix	$[Z(i \omega)]=\left[\begin{array}{ll}Z_{11}(i \omega) & Z_{12}(i \omega) \\ Z_{12}(i \omega) & Z_{22}(i \omega)\end{array}\right]$
4	Solution	$\begin{aligned} & x_{1}(i \omega)=\frac{Z_{22}(i \omega) F_{10}-Z_{12}(i \omega) F_{20}}{Z_{11}(i \omega) Z_{22}(i \omega)-Z_{12}^{2}(i \omega)} \\ & X_{2}(i \omega)=\frac{-Z_{12}(i \omega) F_{10}+Z_{11}(i \omega) F_{21}}{Z_{11}(i \omega) Z_{22}(i \omega)-Z_{12}^{2}(i \omega)} \end{aligned}$
5	Dynamic Vibration Absorber: (two resonant frequencies at which amplitude equals infinity)	$\left.\begin{array}{c} \left\{\left[1+\left(1+\frac{m_{2}}{m_{1}}\right)\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}\right]\right. \\ \left(\frac{\Omega_{1}}{\omega_{2}}\right)^{2} \\ \left(\frac{\Omega_{2}}{\omega_{2}}\right)^{2} \end{array}\right\}-\frac{\left.\left.\mp\left\{1+\left(1+\frac{m_{2}}{m_{1}}\right)\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}\right]^{2}-4\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}\right\}^{1 / 2}\right\}}{2\left(\frac{\omega_{2}}{\omega_{1}}\right)^{2}}$

Bharatiya Vida Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Sem Examination June 2023
Program: Mechanical Engineering
Course Code: PE BTM 532
Course Name: Composite Material Technology

Duration: 3 Hrs
Maximum Points: 100

Semester: VIP

Notes: T. 4.B.Tech $($ mech $)$ Sem- VI

1. Q. $\mathbf{1}$ is compulsory
2. Solve any Four out of Q. 2 to Q. 7
3. Assume suitable data

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Sem Examination June 2023

5 a	Develop an equilibrium equation	10	IV	3	VII
5b	Explain the traction of oblique plane	10	IV	4	VII
6 a	Develop strain tensor of composite	10	IV	5	IV
6 b	Develop stress tensor of composite	10	III	5	IV
7a	Explain the ceramic matrix composites how CMC manufactured with neat diagram and its applications	10	II	5	VI
7b	Explain the post processing operation of composites such as cutting, machining and polishing etc.	10	III	5	'VI

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

END SEMESTER EXAMINATION JUNE 2023

Program: Mechanical Engineering
Course Code: PE BTM537
Course Name: Tool Engineering
Maximum Points: 100

INSTRUCTIONS: T.4.BTech (mech) - Sem- 6.)V

1. Question no 1 is compulsory and Attempt any four questions out of remaining six questions.
2. Draw neat schematic diagrams wherever is necessary, highlight important points of answer.
3. Assume suitable data if necessary and mention it.

END SEMESTER EXAMINATION JUNE 2023

4A	Give effect of following, on quality of machined work-piece surface using sketch: Effect of 1) Tool nose radius (with expression), 2) Rake angle?					10	2	2
4B	A steel washer with outer diameter as 55 mm and inner diameter as 30 mm , which is 10 mm thick. If washer work material is having maximum shear stress of $500 \mathrm{~N} / \mathrm{mm}^{2}$. Minimum percentage penetration required for shearing operation is 30% of thickness. Calculate: a) Work-done, b) Shear to be ground on tool if punch force to be reduced to 0.075 MN .					10	3	5
5A	Write a short note on following terms i) Rate sensitivity, ii) Planar anisotropy in a sheet-metal specimen?					10	4	7
5B	Explain what are different forgeability tests? Draw sketch of rotary forging machine and write short note on this process?					10	3	6
6 A	A Cup has height (h) of 80 mm and diameter (d) 70 mm , corner radius is 3 mm , thickness is 1 mm , work piece material is medium carbon steel (having yield strength of $3600 \mathrm{~kg} / \mathrm{cm}^{2}$). Assume radius of punch is equal to 3 times thickness, radius of die is twice the thickness, clearance is 1.09 times thickness of stock, value of constant ' k ' for drawing pressure of material is 0.65 , force of friction and blank holder force required is one third of drawing force. Calculate- i) Blank diameter (with trimming allowance), ii) Number of draw passes required, punch diameter (d_{ip}) and die opening (d_{id}) for different pass and percentage reduction during each pass, iii) Drawing force ,blank holder and frictional force, Press capacity required? (Refer table 1) Table 1.					10	4	7
6B	Draw neat sketch of Four-high mills and Cluster Mills. Give their advantages over two high roll mill? Explain any two characteristics of Rolled material?					10	3	4

(Government Aided Autonomous Institute)
END SEMESTER EXAMINATION JUNE 2023

7A	Draw a well labeled sketch of Impression-die forging set-up for manufacturing "I" section. Give all Die Design Features for this?	10	3	6
TB	Discuss Defects in Rolled Plates and Sheets along with sketch? Write a short note on cold thread rolling operation?	10	3	4

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

END SEM EXAMINATION, June-2023
Program: B. Tech. in Mechanical Engineering Class: Third Year B. Tech. (Mechanical) Course code: PEC-BTM 538
Course: Industrial Management and Enterpreneurship

Date: 26 June 2023
Duration: $\mathbf{3} \mathbf{H r}$.
Max. Points: $\mathbf{1 0 0}$
Semester: VI

Instructions:

- Attempt ANY 05 questions out of the following
- Draw neat diagram/Sketch/Block Diagram wherever necessary.
- Use Graph paper for drwaing Break-Even Chart
- Answers to the questions should be Brief and Specific in legible handwriting.

	B) Explain: Use and limitations of break-even analysis as a managerial tool. For a certain financial year, ABC Company expects a sale revenue of Rs. 2,00,000 by selling all the produced units at Rs. 20 per unit. The fixed cost is Rs. 80,000 and the variable cost is Rs. 4 per unit. Construct: Break-even chart and Determine: i) Sales volume and ii) Sales revenue for break-even point.						

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester

Program: T.Y.B. Tech. (Mech. Engg.)

Course Code: PE-BTM539

Course Name: Professional Elective-II, Additive Manufacturing

Notes:

$$
\text { T. Y.B. Tech (mech) sem- }{ }^{\text {Gl }}
$$

1. Question number 1 and 2 are compulsory
2. Solve any three questions from question number 3 to 7.

Duration: 03 Hrs
Maximum Points: 100
Semester: VI

3. If necessary assume suitable data with justification
4. Draw neat labeled sketches wherever required.

End Semester Reexaminations - June 2023 Examinations

4 (A)	Explain shape deposition modeling process. Take suitable part geometry to explain processes involved in shape deposition manufacturing.	10	2	5	5
4 (B)	With neat sketches explain projection microstereolithography (MSL)? Discuss advantages and issues with projection surface MSL.	10	1	1	3,4
5 (A)	With neat sketch explain design of flexural mechanism for XY scanning system	10	3	2	3
5 (B)	With neat sketches explain the constraint surface type of microstereolithography.	10	1	3	4
6 (A)	Explain with neat labeled diagram the process plan for development of scaffold type structure for biomedical applications. Explain important aspects in processing slurry way scaffold fabrication. Explain promising materials for applications.	10	4	4	1 to 7
6 (B)	With neat diagram explain Multi-jet modeling process.	10	2	4	5
7(A)	Describe extrusion based RP systems. Discuss Fused deposition modeling (FDM) process with a neat labeled diagram. Discuss various sub-systems of FDM. In one of the FDM system issues in linear scan speeds is observed due to error in software program. On investigation it is observed that X scan speed is optimum, however the Y scan (in the direction of pitch) is twice the optimum speed. Explain consequences in part fabrication. Further in case if Y scan speed would have been optimum and X scan speed being twice the optimum X scan speed, comment in which case part quality would be worst.	10	3	6	5
7(B)	Explain mathematical form of cured depth in ceramic or metal microstereolithograhy along with Mie theory. Explain influence of followings material properties on curing radius and cured depth i) Particle mean size ii) Particle size distribution iii) Refractive index of powder iv) Refractive index of UV curable solution v) Absorption coefficient of powder (Note: Draw rough graphs with curing radius and cured depth taken on y-axis on common graph depicting influence of materials properties. Material properties shall be on xaxis. Justify each of the characteristics).	10	1	4	6

